Dyadic and \sqrt 3 - subdivision for Uniform Powell-Sabin Splines
نویسندگان
چکیده
We give two different possibilities for subdivision of Powell–Sabin spline surfaces on uniform triangulations. In the first case, dyadic subdivision, a new vertex is introduced on each edge between two old vertices. In the second case, p 3–subdivision, a new vertex is introduced in the center of each triangle of the triangulation. We give subdivision rules to find the new control points of the refined surface for both cases.
منابع مشابه
Computer aided geometric design with Powell-Sabin splines
Powell-Sabin splines are C-continuous quadratic splines defined on an arbitrary triangulation. Their construction is based on a particular split of each triangle in the triangulation into six smaller triangles. In this article we give an overview of the properties of Powell-Sabin splines in the context of computer aided geometric design. These splines can be represented in a compact normalized ...
متن کاملLocal subdivision of Powell-Sabin splines
We present an algorithm for local subdivision of Powell-Sabin spline surfaces. The construction of such a spline is based on a particular PS-refinement of a given triangulation. We build the new triangulation on top of this PS-refinement by applying a √ 3-subdivision scheme on a local part of the domain. To avoid degeneration we introduce a simple heuristic for refinement propagation, driven by...
متن کاملMultigrid methods with Powell-Sabin splines
We present a multigrid algorithm for the solution of the linear systems that arise from a finite element discretization of second order elliptic partial differential equations with Powell-Sabin splines. We show that the method yields a uniform convergence independent of the mesh size.
متن کاملQuasi-hierarchical Powell-Sabin B-splines
Hierarchical Powell-Sabin splines are C-continuous piecewise quadratic polynomials defined on a hierarchical triangulation. The mesh is obtained by partitioning an initial conforming triangulation locally with a triadic split, so that it is no longer conforming. We propose a normalized quasi-hierarchical basis for this spline space. The B-spline basis functions have a local support, they form a...
متن کاملA Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split
In order to construct a C1-quadratic spline over an arbitrary triangulation, one can split each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell-Sabin 12-split. It has been shown previously that the corresponding spline surface can be plotted quickly by means of a Hermite subdivision scheme [5]. In this paper we introduce a nodal macroelement on the 12-split...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002